
General Solution of the 

Incompressible, Potential Flow 

Equations

CHAPTER 3

Developing the basic methodology for obtaining the elementary solutions 

to potential flow problem.

Linear nature of the potential flow problem, the differential equation 

does not have to be solved individually for flow fields having different 

geometry at their boundaries. 

Instead, the elementary solutions will be distributed in a manner that will 

satisfy each individual set of geometrical boundary conditions. 
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3.1 Statement of the Potential Flow Problem

The continuity equation for incompressible and 

irrotational

The velocity component normal to the body’s 

surface and to other solid boundaries must be 

zero, and in a body-fixed coordinate system

∇Φ is measured in a frame of reference attached to the body. 

The disturbance created by the motion should decay far (r →∞) from the body

where r = (x, y, z) and v is the relative velocity between the undisturbed fluid in V and the

body (or the velocity at infinity seen by an observer moving with the body).
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3.2 The General Solution, Based on Green’s Identity

The divergence theorem Eq. (1.20) 

q Replace by

where Φ1 and Φ2 are two scalar functions of position

one of Green’s identities

Solving Laplace’s equation for the velocity 

potential for an arbitrary body with one of 

Green’s identities

Volume integral Surface integral

Wake Model
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3.2 The General Solution, 3D (Continue…)

Φ: potential of the flow of interest in V

r  : distance from a point P(x, y, z)

Let us set: 

Case I  : Point P is outside of V

Φ1 and Φ2 satisfy Laplace’s equation in V

Eq. (3.4) 

Case I  : Point P is outside of V 

Case II : Point P is inside V

Case III: Point P lies on the boundary (for Example SB)
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3.2 The General Solution, 3D (Continue…)

Case II  : Point P is inside the region V

Φ1 and Φ2 satisfy Laplace’s equation in V with 

excluded small sphere of radius ϵ

Eq. (3.4) 

Spherical coordinate 

system at P
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3.2 The General Solution, 3D (Continue…)

Potential and its derivatives are well-

behaved functions and therefore do 

not vary much in the small sphere

Eq. (3.6b) 

This formula gives the value of Φ(P) at any point in the flow, within the region V, in 

terms of the values of Φ and ∂Φ /∂n on the boundaries S
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3.2 The General Solution, 3D (Continue…)

Case III: Point P lies on the boundary SB

Integration around the hemisphere with radius ϵ

Eq. (3.7) 

Flow of interest occurs inside the boundary of SB 

Φi : internal potential

For this flow the point P (which is in the region V) 

is exterior to SB

Eq. (3.6) 

n points outward from SB 
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3.2 The General Solution, 3D (Continue…)

Eq. (3.7)  + Eq. (3.7b)

Combination of Inner and outer Potential

The contribution of the S∞ This potential depends on the 

selection of the coordinate sys.

for example, in an inertial 

system where the body moves 

through an otherwise stationary 

fluid Φ∞ =Constant

the wake surface is assumed to be thin, such that ∂Φ /∂n is continuous across 

it (which means that no fluid-dynamic loads will be supported by the wake)
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3.2 The General Solution, 3D (Continue…)

Determining  values of Φ and 

∂Φ /∂n on the boundaries Eq. (3.7) or Eq. (3.10)

Reduced to

Doublet: 

Source:

Eq. (3.10) 

Doublet strength μ is potential difference between the upper and lower wake surfaces 

(that is, if the wake thickness is zero, then μ = −∆Φ on SW)
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3.2 The General Solution, 3D (Continue…)

n .∇∇∇∇ by  ∂/∂n
Eq. (3.13) 

Source and doublet solutions decay as r →∞ and automatically fulfill the boundary 

condition of Eq. (3.3) (where v is the velocity due to Φ∞)

Determining the strength of 

distribution of doublets and 

source on surface

To find the velocity 

potential in the region V

In Eq. (3.13) non-unique combination of sources and doublets for a particular problem

Choice based on the physics of the problem

source term on SB vanishes and only the 

doublet distribution remains

doublet term on SB vanishes
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3.2 The General Solution, 2D (Continue…)

In the two-dimensional case

Source Potential

Eq. (3.6b) 

Eq. (3.7)   

If the point P lies on the boundary SB

If the point P is inside SB

Eq. (3.7b)   

Eq. (3.13a)   

Note: ∂/∂n is the orientation of the

doublet as will be illustrated in later

and that the wake model SW in the

steady, two-dimensional lifting case is

needed to represent a discontinuity in

the potential Φ
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3.3 Summary: Methodology of Solution

In 3D Eq. (3.13) 

In 2D Eq. (3.17) 

General approach to 

solution of incompressible 

potential flow problems

Distributing elementary 

solutions (sources and 

doublets) on the problem 

boundaries (SB, SW).

∇Φ2 = 0
at r →∞    

at r=0

Satisfy B.C. Eq. (3.3)

Velocity becomes singular, 

basic elements are called 

singular solutions

Integration of basic 

solutions over any surface 

S containing these 

singularity elements

finding appropriate 

singularity element 

distribution over some 

known boundaries

reduced to

for general solution

B.C. Eq. (3.2) will be fulfilled
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3.4 Basic Solution: Point Source 3D

One of the two basic solutions presented in 

Eq. (3.13)

Point source element placed at the origin of a 

spherical coordinate system

Velocity field with a radial component only

Velocity in the radial direction decays with the 

rate of 1/r2 and is singular at r = 0
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3.4 Basic Solution: Point Source 3D (Continue)

The volumetric flow rate through a spherical 

surface of radius r

Note: this introduction of fluid at the source violates the conservation of mass; 

therefore, this point must be excluded from the region of solution

If the point element is located at a point r0

σ : Volumetric rate

positive σ :     Source

negative σ :   Sink
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3.4 Basic Solution: Point Source 3D (Continue)

The Cartesian form

The velocity components
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3.4 Basic Solution: Point Source 3D (Continue)

The basic point element (Eq. (3.24)) can be integrated over a line l, a surface S, or a 

volume V to create corresponding singularity elements

Note: σ represents the source strength per unit length, area, and volume

The velocity components induced by these distributions can be obtained by 

differentiating the corresponding potentials
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3.5 Basic Solution: Point Doublet 3D

The second basic solution, presented in Eq. 

(3.13), is the doublet

for elements of unit strength

Developing Doublet element from Source element

a point sink at the origin and a point source at l

l → 0 & σ →∞ such that  lσ → μ (μ is finite)
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3.5 Basic Solution: Point Doublet 3D (Continue)

As l → 0

The angle θ is between the unit vector el pointing in the sink-to-source direction 

(doublet axis) and the vector r

Eq. (3.30)

Defining vector doublet strength

Eq. (3.31)

if el in n direction
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3.5 Basic Solution: Point Doublet 3D (Continue)

For example, for a doublet at the origin and the doublet strength vector (μ, 0, 0) 

aligned with the x axis (el = ex and θ = ϑ), the potential in spherical coordinates is

The velocity potential due to such doublet elements, located at (x0, y0, z0), is

∂/∂n as the derivative in the direction of the three axes
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3.5 Basic Solution: Point Doublet 3D (Continue)

Equation (3.34) shows that the doublet element does not have a radial symmetry but 

rather has a directional property. Therefore, in Cartesian coordinates three elements 

are defined

Eq. (3.36)

The velocity components in spherical coordinates 

for x- directional point doublet (μ, 0, 0)

velocity field, due to a x

directional point doublet (μ, 0, 0) 20



3.5 Basic Solution: Point Doublet 3D (Continue)

The velocity components in Cartesian coordinates

for x- directional point doublet (μ, 0, 0)

Differentiating Eq. (3.37)

This basic point element can be integrated over a line l, a surface S, or a volume V to 

create the corresponding singularity elements (for (μ, 0, 0))
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3.6 Basic Solution: Polynomials 3D
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Laplace’s equation 

is a 2nd order PDE

linear function 

can be a solution

velocity components

Where U∞, V∞, and W∞ are constant velocity components in the x, y, and z directions. 

the velocity potential due a constant free-stream flow in the x direction is

and in general



3.6 Basic Solution: Polynomials 3D (Continue)
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to satisfy 

Laplace’s Eq

Additional polynomial solutions can be sought

A, B, and C should be constants. There are numerous combinations of constants that 

will satisfy this condition.
stagnation flow 

against a wall

At origin x= z = 0, velocity components u = w = 0

stagnation point

Streamline equation (Eq. 1.6a)

3.7 2D Version of the Basic Solutions (Source)
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qr ≠ 0

qϑ = 0

qφ = 0

At 3D source 

element

qr ≠ 0

qϑ = 0

At 2D source 

element

Satisfing the continuity equation (Eq. (1.35))

For Irrotational 

flow

qr function of r only 

qr = qr(r)

σ: area flow rate passing across a circle of radius r.

velocity components for a source element at the origin:

Integrating

Velocity Potential

C Can be set zero

σ: strength of the source

r = 0 is a singular point and must be 

excluded from region of solution



3.7 2D Version of the Basic Solutions (Source)
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In Cartesian coordinates with source located at (x0, z0)

In 2D stream fuction Eqs. (2.80a,b)

Integrating

Integr. const.= zero

Velocity Potential Stream Function

3.7 2D Version of the Basic Solutions (Doulet)
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2D doublet can be obtained by a point source and a point sink approach each other

3D Doublet

Eq. (3.32)

Eq. (3.33)

Replacing the source strength by μ & with n in the x direction

Eq. (3.66)

The Velocity field by differentiating the velocity potential



3.7 2D Version of the Basic Solutions (Doulet)
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The velocity potential in Cartesian, doublet at the point (x0, z0)

The velocity components

Deriving the stream function for this doublet element

Integrating

Integr. const.= zero

Note: a similar doublet element where μ = (0,μ) can be derived by using Eq. (3.66)

3.8 Basic Solution: Vortex
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In 2D Point Vortex                         Velocity Potential & Velocity Field

In 3D Vortex Filament                   Velocity Field by Biot–Savart Law

A singularity element with only a tangential velocity component

Velocity components:

Substitution in continuity 

equation (Eq. (1.35))

For irrotational flow

Integrating with respect to r



Note: Γ is positive in clockwise

The velocity field:

The tangential velocity component decays at a rate of 1/r

The velocity potential for a vortex element at the origin

3.8 Basic Solution: Vortex (Continue)
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Calculating A by using the definition of the circulation 

integration

Integrating around a vortex we do find vorticity concentrated at a zero-area point, but

with finite circulation. if we integrate q . dl around any closed curve in the field (not

surrounding the vortex) the value of the integral will be zero.

The vortex is a solution to the Laplace equation and results in an irrotational flow,

excluding the vortex point itself.

In Cartesian coordinates for a vortex located at (x0, z0)

Deriving stream function for 2D vortex located at the origin, in x–z or (r– θ) plane

The streamlines where Ψ= const

3.8 Basic Solution: Vortex (Continue)
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Integrating

Integr. const.= zero



3.9 Principle of Superposition
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If φ1, φ2, . . . , φn are solutions of the Laplace equation, which is linear, then

a solution for Laplace equation in that region

Where c1, c2, . . . , cn are arbitrary constants

This superposition principle is a very important property of the Laplace equation, paving

the way for solutions of the flowfield near complex boundaries. In theory, by using a set

of elementary solutions, the solution process (of satisfying a set of given boundary

conditions) can be reduced to an algebraic search for the right linear combination of

these elementary solutions.


